Paradox of strength and ductility in metals processed by severe plastic deformation

نویسنده

  • R. Z. Valiev
چکیده

It is well known that plastic deformation induced by conventional forming methods such as rolling, drawing or extrusion can significantly increase the strength of metals However, this increase is usually accompanied by a loss of ductility. For example, Fig. 1 shows that with increasing plastic deformation, the yield strength of Cu and Al monotonically increases while their elongation to failure (ductility) decreases. The same trend is also true for other metals and alloys. Here we report an extraordinary combination of high strength and high ductility produced in metals subject to severe plastic deformation (SPD). We believe that this unusual mechanical behavior is caused by the unique nanostructures generated by SPD processing. The combination of ultrafine grain size and high-density dislocations appears to enable deformation by new mechanisms. This work demonstrates the possibility of tailoring the microstructures of metals and alloys by SPD to obtain both high strength and high ductility. Materials with such desirable mechanical properties are very attractive for advanced structural applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zinc based bioalloys processed by severe plastic deformation – A review

Zinc based alloys have recently attracted great attention as promising biodegradable metals. Zinc exhibits moderate degradation rates in biological fluid and the zinc releases during the degradation process is considered safe to human systems. However, these materials exhibit critical limitations in terms of mechanical properties for medical applications. Adding alloying elements as well as gra...

متن کامل

Nano- and Micro-mechanical Properties of Ultrafine-Grained Materials Processed by Severe Plastic Deformation Techniques

The processing of metals through the application of severe plastic deformation (SPD) techniques provides the potential for achieving exceptional grain refinement leading to ultrafine-grained (UFG) materials in bulk solids. These materials generally exhibit high strength but very limited ductility at room temperature (RT) leading to the so-called paradox of strength and ductility. The recent dev...

متن کامل

Properties and Nanostructures of Materials Processed by Spd Techniques

Metallic materials usually exhibit higher strength but lower ductility after being plastically deformed by conventional techniques such as rolling, drawing and extrusion. In contrast, nanostructured metals and alloys processed by severe plastic deformation (SPD) have demonstrated both high strength and high ductility. This extraordinary mechanical behavior is attributed to the unique nanostruct...

متن کامل

Improving Mechanical Properties, Especially Increasing Tubes’ Strength by Micro structuring Metals Using Severe Plastic Deformation Method

Increasing material’s strength is of particular importance. Improving material’s mechanical properties such as strength could reduce the size and weight of the structure. The size and weight of the structure are among the effective parameters in design. Since the past a variety of methods have been developed to increase the strength of metals that are capable of increasing metals’ strength to a...

متن کامل

Improving Mechanical Properties, Especially Increasing Tubes’ Strength by Micro structuring Metals Using Severe Plastic Deformation Method

Increasing material’s strength is of particular importance. Improving material’s mechanical properties such as strength could reduce the size and weight of the structure. The size and weight of the structure are among the effective parameters in design. Since the past a variety of methods have been developed to increase the strength of metals that are capable of increasing metals’ strength to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001